<概率的意义:随机世界与大数2017年1月15日,这几个例子告诉我们,在处理概率问题时,情境要定义清楚科技资讯网
您的位置首页  科技生活

概率的意义:随机世界与大数2017年1月15日

这几个例子告诉我们,在处理概率问题时,情境要定义清楚。用术语来说,就是概率空间要明确给出,否则将导致各说各话。有时虽未给出概率空间,但情境较简单,大家有共同看法,这时未特别强调概率空间为何,还没问题。如“投掷一的骰子,求点数大于4之概率”。虽只是简单的描述,但不至于有疑义。当对情境有疑义时,就要如庄子在秋水篇讲的,“请循其本”,把概率空间调出来。此有如上或社会上,遇到有重大争议时,就要祭出,看有没违宪,并由大解释。对一给定的情境,要很谨慎的面对。否则即使是概率统计专业人士,也可能解读错误。

编辑:

在随机世界,究竟何者,常属未知。我们往往无法“证明”那件事是真实的。不过是一个个的假设,端看你接受那一假设。四面体点数1出现的概率,是否真为0.1,即使投掷再多次,都无法证明其。只能说数据显示“可以接受”,或“无法接受”概率为0.1。这里面有一套机制,以决定接受或不接受。

信赖区间

这类例子很多。打击手挥棒前,可以说打出安打之概率为0.341,打完不是安打就非安打,0.341已派不上用场了。再给一例。假设某银行发行的乐透彩,每期自1至42号中,开出6码为头号码。你签了一注6码,开前,你知道很容易“至少中1码”,因概率约为0.629(见附注1)。等开后,你的彩券会至少中1码之概率,将是1(若至少中1码),或是0(若1码皆未中)。

再看一例。有一对夫妻刚搬进某社区,大家只知他们有两个小孩,并不知性别。某日社区一管理员,见到此家之妈妈,带着家中一小孩在玩耍。若该小孩是女孩,求此家两小孩皆为女孩之概率。很多人以为此问题不难,认为所求概率就是1/3。其实此问题比我们想像的复杂很多。关键在如何将“见到此家之妈妈,带着家中一女孩“,为适当概率空间中的事件。也就是要楚,究竟如何带小孩出门?要注意的是,前述事件并不等同于“此家至少有一女孩”!

岁月匆匆,七十多年过去了,今日统计学家,当然已完全弄懂信赖区问的意义。对不同的参数,不同的分布,可有不同的信赖区间;即使同一参数且同一分布,也可以不同的方法,得到不同的信赖区间。有时因条件不足,或计算复杂等原因,只好退而求其次,得到近似的信赖区间。当然这时需要一些条件,及利用一些。信赖区间亦可比较优劣。要知统计里有各种推论方法,但因处理的是随机现象,少有“倚天既出,谁与争锋”的方法。而评比时,也要订出评比准则。否则就像有个停止不动的钟,及一每日慢1分钟的钟,如何判定何者较准?前者可是每日皆有完全准确的时刻,后者却是每1440天(一天有1440分),才有一完全准确的时刻。不楚如何评比,将会各说各话。

在统计里,样本数愈大,将使我们的推论愈精准。

导语

何处是概率天地

概率是针对随机现象。但并非每件事都是随机的,我们说过还有必然性。假设投掷一两面皆是人头的铜板,并观察会得到那一面。你晓得这是一必然现象,但仍可说会出现人头的概率为1,而其他情况出现的概率为0。也就是视此为一“退化的”随机现象。

Yes,becausemychanceofgettingthecarwillincreasefrom33.33%to66.67%byswitchingfromdoor1todoor3.

解释概率

2009年7月底8月初,世界高尔夫球王老虎伍兹(TigerWoods),参加在美国州举行的别克公开赛(BuickOpen)。第1轮打完,落后领先者多达8杆,排名并列95。引发他可能难逃职业生涯,首次连续2场比赛(前一场是英国公开赛(TheOpenChampionship,在英国之外常称为BritishOpen)),提前被淘汰的话题。不过老虎毕竟不能小觑,打完前3轮后,伍兹跃居首位。

这一段话,大致说明数学及统计的重要性,及其各自的内涵。

上述三种是常见对概率的解释,大抵也就是人们评估事件发生可能性之大小的几种思维。虽是针对不同的情况,但常能交互着运用。大家都听过曾参的典故吧!有个与曾子同名的人,好心者告诉曾母“曾参”。曾母说“吾子不”,继续织布。过一会儿,又有人来说“曾参”。曾母仍继续织她的布,这么好的儿子怎可能?但当第三人跑来说“曾参”,曾母就害怕了,丢掉织布器具翻墙而逃。所谓“其母惧,投杼踰墙而走”。这故事出自战国策秦策二。因此当拿到一铜板,可主观地认为,发行不该会有偏差,两面出现的概率,应皆为1/2(这也可以是基于相同可能性之想法)。若投掷10次,正面出现8次,可能觉得有些奇怪。若继续投掷,结果100次中,出现80个正面,这时相对频率的观点,很可能便将。类如曾母,调整看法,不再认为此铜板。

1987年,是印度传奇数学家拉曼努扬(SrinivasaRamanujan,1887-1920)的百年诞辰。为了纪念他,有一系列的活动。当代著名统计学者,出生于印度的劳氏(C.RadhakrishnaRao,1920),也应邀做了三场演讲。之后,印度统计学研究所(IndianStatisticalInstitute)基于劳氏的演讲稿,于1989年,为他出版了统计与真理一书。此书于1997年发行第二版。

摘要:今日统计学家,当然已完全弄懂信赖区问的意义。对不同的参数,不同的分布,可有不同的信赖区间;即使同一参数且同一分布,也可以不同的方法,得到不同的信赖区间。有时因条件不足,或计算复杂等原因,只好退而求其次...

数据(data)是统计学家做决策之主要依据。若缺乏数据,他们往往将一筹莫展。来看一简单且常见的情况。假设欲估计一铜板出现正面之概率p。很自然地,便投掷若干次,譬如说n次,并观测n次的结果。这个过程便称为取样。在本情况中,各次投掷的结果并不重要。总共得的正面数,以a表之。知道a,就已掌握全部资讯[a称为充分统计量(sufficientstatistic)]。给定信心水准,并利用n及a,可得一信赖区间,但作法并不唯一。亦即对于p,有不同的信赖区间公式。但课纲的写法,好像信赖区间的公式唯一。此处由于其中涉及二项分布,计算复杂些,如果n够大(n太小则不行),我们常可藉助常态分布来近似。这要用到概率论里另一重要的—中央极限(Centrallimittheorem)。必须一提,只有以常态分布来近似时,才需用到中央极限,并非求信赖区间皆要用到此。

这时大家看法丕变,一致认为这座冠军盃,几乎可说是他的囊中物了。因过去的纪录显示,伍兹如能带着54洞领先进入决赛圈,战绩是35胜1败。你要不要猜后来他赢了没有?运动比赛,往往有过去资料可参考,此时相同的可能性便不宜用了。36次中成功35次,“相对频率”为35/36(约0.972)。这种以相对频率来解释概率,是常有的作法。适用能重复观测的现象。会不会有爆出冷门的时候?当然有。只是对一特定事件,用过去多次同样情况下,该事件发生的相对频率,来估计下一次事件发生的概率,乃是在没有更多资讯下,常被认为一属于客观的办法。

某些物理学家,说不定认为对投掷铜板,由给定投掷的速度、角度、地面的弹性、铜板的形状及重量等条件,可算出铜板落地后,会那一面朝上,因此这不是随机。至于乐透彩的开,只要起始条件都能测出,则会开出那一号球,也能算出,因此这也不是随机。但你大约也知道所谓蝴蝶效应(butterflyeffect)。量测极可能有误差,而有时一些微小的改变,影响却可能很大。因此我们宁可相信这些都是随机现象。

我们常对某一未知的量做估计。未知的量可以是某事件发生的概率,某分布的参数(如期望值及变异数等),或某物件之寿命等。这些未知的量,可通称为参数。有时会以一区间来估计参数,并给出此区间会涵盖该参数之概率。这就是所谓区间估计,所得的区间,称为信赖区间。而区间涵盖参数之概率,则称为此区间之信心水准(confidencelevel)。与概率一样,信心水准是一介于0,1间的值,常事先给定,且以百分比表示。90%、95%、99%等,都是常取的值。

虽说“主观”,但仍要合理。例如,考试有及格与不及格。若认为会及格的概率为0.9,这没问题,人总要有点自信,但若又同时担心有0.8的概率会不及格,那就不行了。各种可能性发生概率相加要为1。即使是主观,可以独排众议,仍须。不能说,既然是主观,便可以任意自定各事件之概率。因此不论是那一种对概率的解释,都自然地,或说必须要满足一些共同的规则。这点大家应能理解。

之前那位数学系毕业生的解释,这时便能派上用场。此即大数(lawoflargenumbers)之一简单的版本。数学上的意思为,事件出现的相对频率,会“概率”至事件发生的概率。要知随机世界中,仍有些要遵循,大数是其中很重要的一个。当然我们已指出了,实际上并无法观测事件无限多次。那是否可说,事件出现的相对频率,当观测数够大,须接近事件发生的概率?也非如此。事件只要概率为正,便都可能发生。所以,不论观测数再大,都不能排除很偏颇(如观测1,000,000次,点数1出现的次数为0,或1,000,000次)的事件发生。但是,这时统计学家跳出来了,可以做一检定,检定点数1出现的概率是否真为0.1,这是属于统计学里假设检定(testinghypothesis)的范畴。简单讲,是以在某一假设下,会观测到这样的结果,是否算不寻常?所谓不寻常,是指发生的概率很小,小于某一预设的值。若属于不寻常,则当初的假设就不宜接受。附带一提,当假设一铜板为,则投掷100次,出现至少80次正面,较投掷10次,出现至少8次正面,前者是更不寻常的,因它发生的概率,远比后者小。所以,在同样获得八成以上的正面数下,投掷数愈大,将会使我们更相信此铜板非,而接受它出现正面的概率,至少是0.8。这说明:

有法国牛顿之称的拉普拉斯(Pierre-Simon,MarquisdeLaplace,1749-1827)曾说:

随机世界与大数

与数学的其他领域相比,概率论的发展是较晚的。但化后,概率论便快速地有了深而远的发展,并成为数学中一重要的领域。这都要归功于二十世纪那位重要的概率学家,的科莫果洛夫(AndreyNikolaevichKolmogorov,1903-1987),于他1933年出版,那本不到100页的小书概率论的基础(FoundationsoftheTheoryofProbability)中所奠定。在此书中,他说:

在第2节我们以概率空间的方式引进概率。由于样本空间可以是虚拟的,此件也就是虚拟的。但假设真的有一项观测,如投掷一个4面体,4面分别标示点数1,2,3,4,并观测所得点数。则样本空间为1,2,3,4之集合。事件的集合可以取那一个最大的,也就是包含样本空间之所有子集所构成的集合。你如果学过排列组合,便知此最大的事件集合中,共有16(2的4次方)个元素。至于概率函数,假设点数1,2,3,4出现的概率,分别为0.1、0.2、0.3,及0.4,相加为1。至于任一事件的概率,就看该事件包含1,2,3,4中那几个数,再把对应的概率相加便是。如一事件中恰包含2,4,则该事件的概率为0.2+0.4=0.6。馀此类推。这就建立了一概率空间。对同一样本空间,可定义出很多不同的概率空间。

在抽象的意义下,所有科学皆为数学。

再看如课纲中所说,也可以乱数表模拟出现正面(课纲中少了“正面”二字,意思便不通)概率为p的铜板n次,以求得信赖区间。你看,p根本是事先设定,模拟所得之一固定区间,p有没有落在其间,一看便知,如何能说该区间涵盖p之概率为0.95?就算你不是模拟,而是实际拿一铜板投掷,则p只是未知,却为某一定值(说不定发行铜板的单位知道),投掷后所得之固定信赖区间,已无随机性了,它只会涵盖p,或不会涵盖p。可以这样想,对同一铜板,每人所得之95%信赖区间有异,如何能个个皆,其区间涵盖p之概率为0.95?

但对已命好题目的老师,去判断那一题会考出的概率,就没什么意义了。因对他而言,每一题会考出的概率,只有1或0,不会是其他值。同样地,对看到背后水果的人,水果会是橘子或苹果的概率,将只能说1或0。随机与随意不同。我们说过了,概率中那套逻辑,是有够大的弹性,让人能挥洒,只是仍要合理,否则就是抬槓了。若你明明知道那是苹果,硬要说它是橘子的概率为0.5;或明明已从医生处掌握一切讯息的待产妈妈,还说生下来,是男是女的概率皆为0.5,那就不是在谈概率了。

在第一版的序文中,劳氏提到:

原作者:黄文璋

翻开统计史,信赖区间,是另一著名统计学者,出生于波兰,1938年才移民至美国的奈曼(JerzyNeyman,1894-1981),于1934年演讲中首度提出。他的演讲结束后,大会包雷(ArthurLyonBowley,1869-1957)于致词中提到,“我不很确定此信心不是一信心戏法”。要知奈曼信赖区间的概念刚提出时,大部分的统计学者,包括被视为是现代统计学之创始者,英国的费雪(SirRonaldAylmerFisher,1890-1962,常以R.A.Fisher称之)均难以接受。在所谓95%信赖区间中,那95%究竟是指什么?是概率吗?如果是,那又是什么的概率?虽奈曼取巧地以信赖区间,来称呼此一他创造出来的东西,而避用概率一词。但包雷及其同行,当然一眼便看穿这个手法。这段过程,可参考Salsburg(2001)Chapter12(但该书中的A.L.Bowley应该是G.M.Bowley),及Sawilowsky(2003)一文。

对估计铜板出现正面之概率p,取样前,信赖区间为一随机区间,若信心水准设定为95%,则有(或精准地说“约有”,如果该信赖区间只是近似的)0.95的概率,信赖区间会包含p。取样后,得到一固定区间。则p会属于该区间的概率,将不是1便是0,而不再是p了。为何如此?很多人对此常感困惑。

有个修过概率论的数学系毕业生,好心地对你解释如下:

概率既然与我们的生活习习相关,因此若能善用概率,将有助于在随机世界中,更精准的做决策。只是却往往概率应用不易,得到的概率值,常被认为是错的。而且还众说纷纭,各提出不同的概率值。个中原因何在?一主要原因,即情境解读有误。

概率的意义:

设置首页-搜狗输入法-支付中心-搜狐招聘-广告服务-客服中心-联系方式-隐私权-AboutSOHU-公司介绍-网站地图-全部新闻-全部博文

我相信:

最后看另一常出现于概率论教科书中的例子。平面上有一单位圆,随机地画一条弦,求弦长大于此圆的内接等边三角形之边长的概率。利用几何,单位圆的内接等边三角形之边长可求出。但如何是随机地画一条弦呢?要知由1至n的n个正整数中,随机地取1数,其意义较清楚,就是每一数被取中的概率皆为1/n。自区间[0,1]中随机地取1数,其意义也还明白,就是此数会落在[0,1]之任一子区间的概率,为该子区间之长度。但随机的画弦,是如何画法?此处对于“随机”一词,可以有好多种解释。解释不同,画弦的方式将不同,因而求出的概率也就不同。

另外,对一四面体,也可估计点数1出现的概率,有一些不同的估计法,可以得到不同的估计量。在数学中,使用不同的方法,须导致相同的结果。所谓殊途同归。但统计里,除非做些,否则常无定于一尊的方法。对不可测的未来,我们常要做估计,统计在这方面,能扮演很好的角色。诸如铜板出现正面的概率,及病人的存活率等,皆能估计。但有时觉得以一个值估计,虽然明确,但估计值很难恰好等于真实值,一翻两瞪眼,常估计不准。信赖区间的概念,因而产生。

概率论作为数学学科,可以而且应该从开始发展,就如同几何、代数一样(ThetheoryofprobabilityasmathematicaldisciplinecanandshouldbedevelopedfromaxiomsinexactlythesamewayasGeometryandAlgebra)。

务实的你,很可能不觉得这样的解释很实际。先提出疑问“什么是趋近至无限大?”就是一直投掷,不可停止,日出日落,春去秋来,继续投掷,即使夸父追日成功了,无限大也仍未达到,还得投掷。那位数学系毕业生,一听到你问起无限大,如鱼得水,这是他在数学系四年寒窗,学到的几招独门绝活之一。你不得不停止无限大这个话题,因连夸父追日,你也觉得岂有成功时?如何能接受解释概率,还得涉及无限大?但还一点你不吐不快的是“我就是不了解概率值的意义,怎么却用概率的概念来解释给我听?”

比较正确的应该是,若主持人事先知道汽车在那扇门后,则他会打开1扇门后是山羊的门(这是较合理的作法,否则游戏便无法进行了),这时若换选第3扇门,则如电影中那位学生所述,得到汽车的概率,将由1/3增加为2/3。但若主持人事先不知汽车在那1扇门后(这当然是少见的情况),只是随机地自第2及第3扇门中,挑一扇打开,且刚好门后是山羊,则便不用换,因换或不换,得到汽车之概率,皆为1/2。

这门源自考虑赌博中的机运之科学,必将成为人类知识中最重要的一部分,生活中最重要的问题中的大部分,都将只是概率的问题(Thisscience,whichoriginatedintheconsiderationofgamesofchance,shouldhavebecomethemostimportantobjectofhumanknowledge.Themostimportantquestionsoflifeare,forthemostpart,reallyonlyproblemsofprobability)。

想解释概率值的意义,将会在概率及无限大,一层又一层的打转。这有如想去定义什么叫做点,结果将如同陷在线团中,学步维艰。最后只好说,点是无定义名词。但无论如何,你应可理解,对前述4面体,仅投掷1次,是无法显示点数1出现概率0.1,那个0.1的意思。概率并非只看“少数几次”的结果。概率是在大样本(n很大)下,威力才。概率值的意义,既然不能以一套可接受的逻辑来说明。那么退而求其次,可否让人略微了解概率值的意思?或者说(除非是虚拟,只是在求一些概率值),你拿一4面体,且点数1出现的概率为0.1,怎么样才知道你讲的是真的,而非,或者说记错。

追根究底,还是不少学习者,未能正确了解概率的涵意。

某君看上一女孩,惊为天人,觉得这是他的新娘。评估后信心满满,自认追上的机会有8成。旁人却都不看好,问他8成这一数字,是如何冒出来的?该君举证历历,一个又一个的迹象,显示那女孩对他很有好感。这个0.8的概率,就是所谓主观概率。主观概率当然也可基于过认识概率35去一些客观的事实。只是即使面对同样的资料,不同的人,可能有不同的判定,因而给出不同的主观概率(看过他其实没那么喜欢你(He’sJustNotThatIntoYou)吗?片中那个叫Gigi的女孩,便常男生所透露的讯息)。有些现象就是不能重复观测。如核能电厂的意外,及彗星撞地球等。以追女孩为例,大约少有女孩,会让你做实验,反覆地追,然后数一数其中成功几次,来定下她会被你追上的概率。对这类无法重复观测的现象,在谈概率时,主观概率就常派上用场。每天早上出门,我们不是惯于抬头看天,判断一下今天下雨的概率有几成?只是往往父母认为的概率会大些,该带伞,而小孩所认为的下雨概率会小些。

教授则说“Verygood!”,认同其看法,也就是该换。有些人对此提出质疑。

在最终的分析中,所有知识皆为历史。

当然,你可以不信邪,不论投掷的结果如何,皆认为那只是短暂的情况,意志坚定地认为这是一的铜板。这并没有不行,就像会有母亲,即使再多的人证,只要她没亲眼看到,她就不信儿子会。要知随机现象,事件只要概率为正,不论概率值多小,便皆可能发生。毕竟铜板正面出现的概率为何,只有天晓得。但引进概率与统计,乃为了协助我们做决策可以更精准。而决策可以与时推移,并非不能更改。有如气象局对颱风会带来多少雨量,须密切掌握新的动向,而随时修正。要有随机的思维,如前言中劳氏所说的,从给定的结果,验证前提。因此针对100次投掷,出现80个正面,多数人面对此结果,还是会认为0.8的正面出现概率,较0.5的概率可信。稍后我们会再来看,10次中的8次,与100次中的80次,相对频率同为0.8,但提供的资讯,是否有异?

在的世界里,所有判断皆为统计。

一骰子有6个面,一掷之下,会得到偶数之概率为何?骰子看起来没有异样,就假设每个面出现的概率皆相同,即均为1/6。而偶数面有2,4,及6等3个。因此所求之概率为3/6。这就是所谓古典的概率,基本假设是“相同的可能性”。先求出观测的现象共有几种可能,再求出其中有几件是我们有兴趣的。将后者除以前者,即为所要的概率。虽说是“古典”,这种概率的意义,至今仍处处可见。採用的范围包含诸如抽籤、玩扑克牌,及玩乐透彩等。又如某项工作徵才,报名的有82人,录取5人。若没有什么特别的资讯,便只能假设每人被录取的概率皆相同,即皆为5/82。

虽然已有上述三种对概率的解释,也涵盖了不少实际生活中所遇到的情况,数学家当然不会在此止步。他们喜欢抽象化,及一般化。像解方程式,会寻求公式,以表示出某类方程式的解,而非只满足于求出一个个的特例之解。又如当完全了解实数系统后,便会以化的方式,定义实数系统。即给一集合,没说是数字的集合,对其中的元素定义二运算,并给出10条遵循的(axiom,规则)。你好奇该二运算是否一为加法,一为乘法?而怎么没有减法与除法?名可名,非常名,数学家不认为你提出的是重要的问题。但用心体会后,你终于发现原来二运算,其一等同于加法,其二等同于乘法。也看出此集合中,有一元素根本就是0,而有一元素根本就是1。数学家对你的洞察力,仍不以为意,但同意你可以这样想。

就算你已接受了概率空间的概念,反正数学家就是常给一些其乐的定义,仍可能会好奇,所谓点数1出现的概率0.1,究竟是什么意思?是每投10次,点数1恰出现1次吗?非也!

在概率空间的架构下,不论采用何种方式解释概率的人,都可各自表述,找到他所以为的概率意义。但因抽象化后,不再局限于铜板、骰子,及扑克牌等,便能讨论较一般的问题,有够多的理论可挖掘。

我们先以下例来说明。假设某百货公司周年庆,顾客购物达一定金额,便能自1至10号中抽1彩球。若抽中5号,今天在该公司的花费,可获30%抵用券。在抽球之前,你知道有0.1的概率能获抵用券,机会不算小。一旦抽出,一看是3号,获抵用券的概率当然便是0了。

但是读者不知是否注意到,在主持人事先知道汽车在那一扇门后的情况中,我们其实还隐含做一假设。即若第2及第3扇门后皆是山羊,则主持人乃随机地(即各以1/2的概率)打开第2或第3扇门。事实上,可以有更一般的假设。当第2及第3扇门后皆是山羊,假设主持人分别以q及1/q的概率,打开第2或第3扇门,其中0≤q≤1。则换选第3扇门,得到汽车的概率成为1/(1+q)(见附注2)。原来此概率会受主持人是如何打开第2扇门的影响!很多人可能未想到这点。由于1/(1+q)≥1/2,所以换,仍是较好的选择。

什么叫以化的方式,来引进概率?先要有一个集合,称做样本空间,当做某一观测之所有可能结果的集合。可以真的有这一观测,或只是虚拟的。样本空间的某些子集合,是我们有兴趣的,这些就是一个个的事件。所有事件也构成一集合。最后定出一概率函数,即对每一事件,给一介于0,1间的值,为该事件之概率。样本空间、事件的集合,及概率函数,三者便构成概率空间(probabilityspace)。这其中对样本空间没有太大要求,但不可以是空集合。而事件的集合,要满足若干条件。简单讲,就是你有兴趣的事件不能太少。譬如说,不能只对某事件A发生有兴趣,却对A不发生没兴趣。因此事件的集合要够大,至少该有的都得纳入。这有点像婚宴前拟宾客名单。可以请很少人,如只有双方家长。而一旦多列了某人,与他同样亲近的人便也要一併请。所以每多列1人,将不只是增加1人而已,而会随之增加几位。又概率函数,既然以概率之名,当然要符合过去大家对概率的认知,满足一些基本的条件。

那95%有何用?0.95是一概率值,而概率值从来就不是只看一次的实验结果。大约可以这么说,如果反覆实验,而得到很多信赖区间,则其中会包含p的信赖区间数,约占全部区间数的95%。所以,0.95的意义,乃如同上一节我们对概率的解释。但要留意的是,对同一个p,如果全班40人,所得到的40个95%信赖区间,其中包含p的个数未超过85%(即未超过34个),也不要太惊讶。此概率约为0.01388(附注2),是不太大,但只要班级数够多,便不难发生。98课纲说“大多数学生所得的信赖区间都会涵盖p”,实在缺乏随机的概念。

情境解读

假设投掷n次,点数1出现a次,则相对频率a/n与0.1之差的绝对值,会大于一给定的正数(不管它多小)之概率,将随着n的趋近至无限大,而趋近至0。

在电影决胜21点(英文片名就是21)中,那位数学教授于课堂上提出一个问题。有3扇门,其中1扇门后有汽车,另两扇门后为山羊。你选择第1扇门后,主持人打开第2扇门,见到山羊。问你这时该不该换选第3扇门?有位学生答:

学生时代,我主修数学一种从给定前提下演绎结果的逻辑。后来我念统计学一种从经验中学习的方法,及从给定的结果验证前提的逻辑。我已认识到数学及统计,在人类为提昇自然知识,及有效管理日常事务所做的一切努力中,占有重要性。

某些家,可能认为一切其实都是按照神的旨意在进行,只是我们不知而已。说不定真是如此。你看过杰逊王子战群妖(JasonandtheArgonauts)吗?这是一部基于希腊的电影,内容与十二星座中的牡羊座有关,1963出品。我虽是幼时看的,至今仍印象深刻。片中杰逊王子的各种突如其来的灾难,以及一次又一次英勇的逢凶化吉,不过是天后赫拉(Hera),与宙斯(Zeus)在较劲,分别作梗及协助。但若无从了解神的旨意,对于未来,也只好视为随机。

过去大家在数学课程中,会遇到所谓应用题。题目看懂,写出数学式子后,就是解数学了。这时便可抛开原先那段冗长的叙述。但在概率里,有些看似简单的情境,因解读不同,会导致南辕北辙的结论。底下给几个例子来看。

随着科技进步,人们逐渐弄明白很多现象的来龙去脉。例如,我们知道女性一旦怀孕,婴儿性别便已确定。但对一大腹便便的妇女,好事者由于不知,仍可猜测其生男生女之概率。考试前夕,学生们虽认真准备,但还是猜题,各有其认为考出概率很大的题目。老师获知后,觉得好笑。课堂中已一再暗示,那些题会考,几乎都该能确定了,何需再猜?实则试题早已印妥,而学生不知考题,且未体会老师的暗示及,所以仍可以大猜一通。另外,诸如门外有人敲门,你好奇是男是女?老师要你猜拿在背后的水果,是橘子或苹果?同学盖住落地的铜板,要你猜正面或朝上?这类明明已确定的事,本身其实并不随机,只是对你而言,却有如惠子在秋水篇所说的“子非鱼”,当然可猜鱼快乐的概率。

搜狐不良信息举报邮箱:

概率的意义

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186
友荐云推荐