您的位置首页  科技资讯  行业

2000科学实验4代灯泡教学(2000科学实验3代教学灯泡)

2000科学实验4代灯泡教学(2000科学实验3代教学灯泡)

 

什么是电子衣柜?顾名思义,就是电子化的衣柜,但以电子衣柜所提供的功能来看,它的定位已经不算是一种家具,而是智能化的家电产品,主要就是帮你处理衣物护理的大小事。

每隔一段时间,就会有那种

「呀科学家制造了一种不存在的颜色?」

「紫色其实并不存在?」

之类的话题传播

这个是洋红色

为了方便讨论这里面的原因 进行电影放映计划,我们众筹了一台投影仪,探索色彩的秘密。

本来我们应该兴高采烈开始互相交流 观影 经验了,但是却遇到很尴尬的事情……

投影实拍,图片来自网络

01

如果你是 / 曾经是 / 将要是一个好好学习天天向上(good good study,day day up) 的社会主义好学生,那么每天上课的时候免不了要举起手机对着老师的幻灯片拍拍拍,生怕错过了什么重要细节。得益于现在手机相机优秀的放大性能,手机很多时候也能给抢不到前排的同学带来福音。

明明想要好好学习,却发现讲义被彩色条纹盖了个严严实实…… 实际上,这里面就藏着我们人眼能看到,但是自然界中却「不存在」的颜色的秘密

老师们的幻灯片在以前,还不是这样子。

幻灯片投影仪

那时候的幻灯片,是现实中真的一张一张透明的彩色的片。这个话题说起来真的是「暴露年龄」。老师们把幻灯片放到载盘上,在载盘下方灯泡发出的光线穿过幻灯片,调节透镜和平面镜的位置,通过折射和反射,让光线聚焦在和地面垂直的投影幕布上,成一个放大的像。因为灯泡的功率很大,所以通常在灯泡边上还会有一个帮助其冷却降温的风扇。一开机,这个风扇也会呼呼呼地吹起来。

光线从透镜的一侧进入后,经过折射平行光会焦于焦平面,再成像。通过调节物距,就可以移动像距,图片来自 ello.co/marcrodriguez

长江后浪推前浪,前浪死在沙滩上……在个人电脑普及开来以后,就再也见不到上面这种最有「古典范」的幻灯片和投影仪了,取而代之的是演示文稿、办公软件和数码投影仪。幻灯片这个名字也渐渐地出现的次数也少了,屁屁踢反而变多。虽然大家现在叫得多,但这个名字的诞生,却是在洗澡的时候想出来的。产品负责人 Bob Gaskin 为了避免和市面上的其它产品重名,才取名为PowerPoint,却没想到成就了一个全球通用的名词。

手机使用一定时间后,电池续航力必定越来越差,出门时尤其会担心手机半路没电,但耗电主因也不全然在于电池,在试图更换手机电池之前,不妨先设定好手机,减少iPhone的耗电量。

洗澡的名人,除了阿基米德你还能想到谁

02

在开始解答我们的标题这个问题之前,我们需要先来唠唠投影仪的发展史——这真的是一部活脱脱的人类「视觉动物」进化史。虽然现在视觉动物听上去是一个……不是很友好的词,但人类在追求视觉和色彩的道路上那是真的狂奔不止

科学史上对光和颜色之间的讨论始于亚里士多德,但是真的要说出点门道来,还得等到我们的牛顿牛爵爷出面。不得不说牛顿真的是狠人——对自己狠的那种,为了研究不考虑任何后果。比如长时间用一只眼睛看太阳,直到把眼睛把所有白色的物体全都看成红色。此时再闭上眼睛,反复之后,他发现眼前,会出现和太阳一样的斑点,虽然他现在并没有看着太阳。由此他得出结论,他的幻觉也能像太阳一样充分激励神经

牛顿在光学方面贡献颇多,最为人所知的,其实还是用三棱柱进行分光实验,图片来自 @thesarahshow

当然我们现在可以测出来神经信号传播的速度大约为 90m/s,通过产生视觉的时间差,我们可以判断大脑在合成视觉信号的过程中起到了一定的作用,更何况三原色理论早已久经考验。因为人眼中存在着三种不同的波段敏感的细胞,就有人巧妙地设计了「色彩匹配实验」。基本原理在于人眼不擅长直接定量,但很擅长比较。如果只用两种色光混合,始终会有颜色合成不出来,但是一旦使用三种颜色,人们就能混合出光谱里面的任意颜色。摸清楚了这一点,人类真的算是在成为「视觉动物」的历史上迈出了一大步。

挑口红颜色的过程,就和色彩匹配实验差不多。需要比较的两边分别是参考的特定波长的光和三原色混合而成的光。图片来自 @jessmac

正是在前辈们的探索下,我们终于找到了人类颜色感知的「基底」。因为人眼的构造,想要得到各种颜色,我们并不需要产生特定波长的光线,只需要让红绿蓝三种颜色以适当的比例混合在一起,进入到人眼里,万能的大脑就能把它们合成起来。虽然这里是轻描淡写混合两个字,但在人类的历史上为了得到彩色,真的不是一件容易的事情。

03

混合的思路我们可以有两种,一种是在时间上混合,一种则是在空间上混合。前者靠脑补,后者……还是靠脑补。当然脑补的方式还是有点点区别的,前者生成颜色需要靠前面牛爵爷探索得到的延迟效应,再让大脑脑补,后者是让大脑直接脑补。

所谓脑补,其实就是猪鼻子插大蒜。图片来自网络

早期的投影仪思路非常地简单粗暴,想要放映彩色内容的话,需要使用三种光源和三个透镜,叫做「三枪投影仪」,分别投射出红、绿、蓝三种颜色,而我们想要的影像,就通过这三种颜色的明淡来进行混合。因为放映过程中需要使用的灯泡功率都很高,把三组灯泡和透镜系统组合起来,需要复杂的电缆。而且还有一点很要命,这个光学系统太过复杂,需要把三个画面都要投到屏幕上的同一位置,对焦十分不方便。所以在最开始的时候发展非常受限。

三枪投影仪的样子,不是红绿灯。图片来自网络

那么我们能不能够把三种光源合成成一个呢?在「三枪投影仪」问世后,人们发展了被称为「单枪投影仪」。在投影仪这个领域里面,「炮塔」,也就是光源越多,似乎并没有什么用,反而凭空增加了系统的大小和调节的复杂度。

在「单枪投影仪」里面,按照混合不同颜色色光的思路的不同,大概分为 LCD 和 DLP 两个流派。需要说明一下,这两个流派其实现在发展了很多分支,不过太过专业的东西今天我们就不涉及了。

液晶显示器的基本原理示意图。通过调节电压让液晶分子在空间中的取向发生变化,从而控制不同颜色的光的多少,进而控制发光的颜色。图片来源见右下角

LCD(Liquid Crystal Display) 以液晶显示技术作为彩色来源基础。液晶显示面板我们每天都能够看到,人如其名,彩色的来源正是液晶。液晶在 1888 年由植物生理学家弗里德里希·莱尼泽发现。关于液晶最神奇的效应,就是它对光线的振动方向有选择性。液晶分子的形状像一个擀面杖,通过改变电压,让这个擀面杖转起来,就能控制通过的光的强弱。诞生于 1989 年的爱普生 VJP-2000,便是全球第一台 LCD 投影机,到今年已经有整整三十年的历史。

色轮示意图。投影仪中色轮样式有很多种,上图中是最简单的只有红绿蓝三种颜色的样式。图片来自网络

再后来的技术演进中,出现了 DLP 这个流派,采用另外一种不同的方法。单片 DLP 投影仪通过色轮来产生颜色,从灯泡上发出的光经过色轮上不同的透光片,变成了三原色的光,再通过数字信号控制的反射板,把光线反射形成屏幕上对应的图样。色轮上通常被分为四个区域:红区、绿区、蓝区和用来增加亮度的透明区域,为什么不使用只有三种三原色红绿蓝的色轮呢?原因很简单,DLP 投影仪里面只使用了常用汞灯光源 1/3 左右的有效部分,亮度其实大打折扣,最后看到的图片颜色与真实色值存在一定色差。

我们在评价投影仪的时候,投影仪的亮度其实是一个非常重要的参数,投影仪越亮,意味着投出来的屏幕更清晰,在白天都能看得见。看到投影仪看不清了,第一反应是去换一个灯泡,但是殊不知在这里面还存在色彩亮度和白光亮度这个区别。不同的投影技术下,同样的白光亮度其实并不意味着相同的色彩亮度,比如 DLP 的效率就不如 LCD。

LCD 使用的分光器原理示意图。投影仪中常用的光源为汞灯,具有分立的谱线,其蓝色谱线和绿色谱线正好对应 CIE 色彩空间中的两种原色。分光器通过镀膜,可以使得特定波长的光发生反射,而其余的光穿透而过,实现分光原理。光源的利用率更高。图片来自网络

色彩亮度这个概念可能大家是第一次听说,但在我们的生活中其实有很多应用。比如一张照片,电脑上看起来还好好的,但投影投出来却是灰蒙蒙的,这就是因为输出的彩色光不够亮,看起来就和加了个滤镜似的。

不同色彩亮度的对比图。图片来自百度百科

04

洗衣机插头,拔还是不拔?  每次使用完后拔掉插头当然是最好的但是在我们日常的使用中插拔插头实在是不方便如果经常使用,像在夏天从便利性的角度出发是不需要频繁插。

为了给大家真的感受投影仪里面发生了什么,小编厚着脸皮整来了另一个使用不同原理来生成色光的投影仪。因为是借的,怕拆了以后组装不回去(小编太菜了),特地准备了偏振片,来不破坏地展示不同色彩的合成原理 正经玩专栏失业警告 。

我们架设好两台投影仪机器以后,让它们都在相同的距离往墙上投影。举起手机,然后,就是我们见证奇迹的时刻。

如果你的手机拍照参数不太对的话,就会拍成这个样子。关注我们比较久的肯定知道这张图是个啥,我就不解释了

可以看到,在拍出来的照片里面,上方的电脑桌面还保持了比较真实的颜色,下方投影仪画面用照片效果已经完全偏离了真实的颜色了。在手机拍照的时候,DLP 投影仪还来不及在每个位置都撒上红绿蓝三种颜色,所以就看到这三种颜色分开,而不是彩色的情况。因为 DLP 的投影仪里面的色轮并不是只有红绿蓝三种颜色,而是还留了一块透明的部分,发出白光,所以还有一部分是黑白的。

在换用另一台拍照的设备以后,可以看到,两种投影仪的差别并不是那么的大。

小时候电视台停播的时候的画面,其实是用来测试屏幕的。可以看出来下面这台投影仪的画面整体都偏暗,比如左下角的颜色都难以辨认分界线了

但是这两者之前仔细一点看的话,区别还是有的,因为我们选用的投影仪的型号的关系,DLP 型号的白光亮度更高,所以下面的图片白色部分比起上面而言会更亮一些。但是彩色部分亮度表现却不如 LCD 原理的投影仪

因为 LCD 使用液晶控制亮度,所以最后镜头出来的光是偏振光,几个偏振光叠加在一起,构成了最后的彩色。正好我们手头有现成的偏振片,可以一探究竟。我们已经知道 LCD 投影仪中的色轮是三原色,红绿蓝,而且可能具有不同的偏振方向。

偏振片

我们把偏振片放在投影区域中的白色部分,并缓慢转动偏振片。可以看到经过偏振片以后,光线的颜色会缓缓从绿色变成洋红色。在其他不同颜色,也会相应地有不同的偏振方向。

通过偏振片,我们可以确定投影仪确实是由不同偏振方向的色光合成而成的

但是如果我们把偏振片移动到 DLP 投影仪投出来的图像上,颜色并不会有变化。

这个并不是偏振光

前面提到,如果拍照的时间太短,那么 DLP 投影仪还来不及在每个位置都撒上红绿蓝三种颜色。因为运动是相对的,如果我们目光扫过屏幕的速度足够快,那么在人眼看来,屏幕就是相对人眼处于高速运动状态,DLP 投影仪就会出现色光分离,也就是彩虹效应。

彩虹效应示意图……因为我们实在拍不出来,就在网上找了一张了。实际实践的时候左右来回晃动眼球就可以看到,非常明显。经过尝试,这种效应在暗色背景下尤为明显。

05

有了前面那么久的铺垫,我们终于可以解答标题里面的问题……

为了解答这个概念,我们需要把上面对于色彩的描述定量化,也就需要使用色彩空间。CIE RGB 色彩空间是一种很常用的色彩空间。其x,y 横纵两个坐标分别表示标准化以后的三原色中红色和绿色的成分,1-x-y 代表蓝色。由此构成了人类所感知到的所有颜色。

CIE-xyz 色彩空间。图中的三角形代表汞灯的蓝色谱线与绿色谱线,还有 700nm 红光所能制造的所有色彩的范围。

图上上边缘的那条曲线,是指波长从 435.8nm 连续变化到 700nm 的可见光,在色彩空间上的轨迹。因为人眼对色彩的感知几乎是线性的,如果我们随便从色彩空间中选两种颜色 C1 和 C2,那么这两点连成的线段上每一点的颜色都可以用 C1 和 C2 组合而成。选定三种颜色,就可以画一个所有可显示颜色的三角形。因为我们不可能拥有除了自然的可见光波段其它的光源,所以三个角落各有一些空白。

在投影仪中,常用的是汞灯,来得到不同的三原色。理想很丰满,现实很骨感,这句话我们说了很多遍了,投影仪里面也是一样。我们实际得到的颜色肯定没有上面那个三角形那么大。

洋红色

对于 CIE RGB 色彩空间中下半部分,人眼可以将蓝色和红色混合成洋红色(就是今天封面图的颜色),但是实际上并不存在特定波长的光,在人眼看来是真正的洋红色。

这就是投影仪合成「不存在」的颜色全部的真相了。

后记

经过这么一番折腾,

我们终于知道啥样的内容更适合

我们决定重新挑选投影仪

然而,现实是

钱包限制了我们的购买力

甚至连两台借来的投影仪都买不起

* 感谢正经玩小编 Major Tom 提供的摄影支持

参考内容

1. 幻灯片投影仪 - 维基百科

2. Microsoft PowerPoint,wikipedia

3. 现代科学先驱牛顿 By 王金锋

4. Young-Helmholtz_theory, Dichroic_filter, Screen-door_effect

编辑:Cloudiiink

对于一些刚刚入门的摄影爱好人员来说,经常会在选择镜头的时候感到困惑,因为不知道应该选择定焦镜头好还是选择变焦镜的好。

免责声明:本站所有信息均搜集自互联网,并不代表本站观点,本站不对其真实合法性负责。如有信息侵犯了您的权益,请告知,本站将立刻处理。联系QQ:1640731186
TAGS标签更多>>